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Perhaps the most often ‘CALL’ed subroutine in any
Monte Carlo computer code written to perform radiant
exchange calculations in an enclosure is that which ran-
domly determines the diffuse direction for a ray bundle
leaving a surface of the enclosure. This is because surface
emission (almost always) as well as reflection (very often)
are characterized as being diffuse. Thus, a more efficient
way of determining the diffuse direction can save con-
siderable computational time and effort.

In the conventional method, as was presented by How-
ell and Perlmutter [1], the diffuse direction from point D
on surface S in Fig. 1a is obtained by random selection
of angles 0 and ¢ with respect to the local coordinate
system shown in Fig. la. Two random numbers
0<Ry<land0 < R, < 1 are selected, and 0 and ¢ are
then calculated using

0= sin*'\/RT) and ¢ =2nR, (1)

The method suggested here is based on the fact that
the diffuse radiant energy leaving a point source located
on the inner surface of a sphere is distributed uniformly
throughout the inner surface of the sphere. This is a
corollary to a well-known property of the sphere that the
diffuse view factor between two area elements on the
interior surface of a sphere depends only on the size
of the receiving element [2]. This property is utilized in
designing integrating spheres. Looking at this idea from
the opposite direction, it is clear that if a large number
of points on the interior surface of the sphere are selected
in a manner such that their distribution is uniform
throughout the sphere, and these points are then used as
means of defining paths of rays emanating from a source
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on the interior surface of the sphere, then the source must
be a diffuse one, or the diffuse emission from the source
is appropriately simulated.

By referring to Fig. 1b, it can be seen that the diffuse
direction from a point D on surface S may be easily
obtained by random selection of a point on the surface
of an imaginary sphere which is tangent to surface S at
point D. Points on the sphere are identified by azimuthal
and circumferential angles, 0 and ¢, respectively, relative
to a coordinate system whose origin is the center of the
sphere, as shown in Fig. 1b. The size of the sphere is
arbitrary. Now the question is the manner by which these
angles are determined in order to have a uniform dis-
tribution of points on the interior surface of the sphere.
This follows from the basic procedure for finding the
inverse probability functions for 0 and ¢ to satisfy the
condition of uniform distribution of points on the interior
surface of the sphere. The procedure is as follows.

An infinitesimal area element d4 on a sphere having
an arbitrary radius R is given by

dA4 = R*sin0d0d¢

By dividing this equation by the surface area of the entire
sphere, 4nR?, a probability density function for the dis-
tribution of area on the sphere is obtained as

sin 6
p0,0) = Hd@ d¢

Although p(0,¢) is a function of two variables, it can be
written as a product of two single variable probability
density functions p,(0) and p,(¢). That is,

p(0.9) = po(0) py(¢)

Now by noting that the integrals of p,(0) and p4(¢) over
their entire domain have to equal to unity, we, therefore,
must have
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Fig. 1. Determination of the diffuse direction by: (a) the conventional method and (b) the tangent sphere method.
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sin 0
po(0) = 7(10

1
Po(9) = 5_do

The cumulative distribution functions are then
obtained as

P@=r Po(@) = (1 —cos )

0=

z' The sphere is
tangent to S at
. point D.
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Fig. 2. Diffuse direction for a general coordinate system: (a) the conventional method (b) the tangent sphere method.
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P(¢) = L/opd)((/) )d¢' = b

Hence the inverse probability functions are obtained by

setting two random numbers R, and R, equal to P(0)

and P(¢), and then solving for 0 and ¢, respectively, to

get

0 =cos 'QR,—1) and ¢ =2=nR, )
The advantage of the ‘tangent sphere’ method over the
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conventional method becomes obvious when they both
are applied to an arbitrarily oriented surface of the
enclosure. As is shown in Fig. 2a, the diffuse direction
given by equation (1) is determined relative to the local
coordinate system x’y’z” which, in general, is both rotated
and translated with respect to the global coordinate sys-
tem xyz defined for the enclosure. Thus, some effort is
needed to convert the diffuse direction obtained relative
to x’y’z" into that for the global xyz coordinate system.
On the other hand, using the “tangent sphere’” method,
one is free to choose a local coordinate system x'y’z’
whose axes are parallel to the global coordinate system
xyz. This is due to the inherent geometrical symmetry of
the sphere which does not restrict us to choose, for
instance, z” axis in the direction of normal to surface S at

point D. Once the diffuse direction is determined using
equation (2) for the local x"y’z’ coordinate system, the
conversion of this direction to coordinates of xyz is
clearly much easier because both coordinate systems are

parallel.
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